颜林林 (2022-06-23 07:02):
#paper doi:10.1186/s12859-022-04768-x BMC Bioinformatics, 2022, Using BERT to identify drug-target interactions from whole PubMed. 这篇文章通过使用自然语言处理技术中BERT模型,批量分析了PubMed和PMC的全数据库,从文章中识别出药物和蛋白质信息,并提取药物-靶点相互作用(DTI)数据,包括对应所使用的实验方法类别等重要信息。通过本文的方法,新识别出的60万篇文章,都未被公共DTI数据库所包含。通过人工抽查审核和较差验证的方法,确认了该方法的准确度(99%以上)。通常这类数据的文献挖掘和整理,都依赖于人工,在效率上存在很大局限。诸如本文的人工智能方法,将为药物发现和重定位、加快药物开发等提供帮助。
IF:2.900Q1 BMC bioinformatics, 2022-Jun-21. DOI: 10.1186/s12859-022-04768-x PMID: 35729494
Using BERT to identify drug-target interactions from whole PubMed
翻译
Abstract:
BACKGROUND: Drug-target interactions (DTIs) are critical for drug repurposing and elucidation of drug mechanisms, and are manually curated by large databases, such as ChEMBL, BindingDB, DrugBank and DrugTargetCommons. However, the number of curated articles likely constitutes only a fraction of all the articles that contain experimentally determined DTIs. Finding such articles and extracting the experimental information is a challenging task, and there is a pressing need for systematic approaches to assist the curation of DTIs. To this end, we applied Bidirectional Encoder Representations from Transformers (BERT) to identify such articles. Because DTI data intimately depends on the type of assays used to generate it, we also aimed to incorporate functions to predict the assay format.RESULTS: Our novel method identified 0.6 million articles (along with drug and protein information) which are not previously included in public DTI databases. Using 10-fold cross-validation, we obtained ~ 99% accuracy for identifying articles containing quantitative drug-target profiles. The F1 micro for the prediction of assay format is 88%, which leaves room for improvement in future studies.CONCLUSION: The BERT model in this study is robust and the proposed pipeline can be used to identify previously overlooked articles containing quantitative DTIs. Overall, our method provides a significant advancement in machine-assisted DTI extraction and curation. We expect it to be a useful addition to drug mechanism discovery and repurposing.
翻译
回到顶部