张浩彬
(2022-05-30 19:14):
#paper Wen, Ruofeng, et al. A Multi-Horizon Quantile Recurrent Forecaster. #paper Wen, Ruofeng, et al. A Multi-Horizon Quantile Recurrent Forecaster. DOI: 10.48550/arXiv.1711.11053
MQRNN,又是亚马逊的时序论文。之前看了DeepAR,可以对多个序列进行建模,并且也有很好的鲁棒性。但是相比之前的prophet和DeepAR,MQRNN走了另外一个路子,基于分位数的预测。这样的一个好处是,它认为我们不再去预测序列在t时刻的分布,而是预测t时刻的分位数,走了分位数回归的路子。另外,相比于DeepAR,MQRNN使用了水平多无预测,即不再采用迭代方式预测多步,而是一次性产生多步预测。按照论文的说法,这样的好处是提高了预测效率(毕竟可以并行),减少了累积误差(个人觉得这点,见仁见智,本质其实一样)
arXiv,
2017.
DOI: 10.48550/arXiv.1711.11053
A Multi-Horizon Quantile Recurrent Forecaster
翻译
Abstract:
We propose a framework for general probabilistic multi-step time series regression. Specifically, we exploit the expressiveness and temporal nature of Sequence-to-Sequence Neural Networks (e.g. recurrent and convolutional structures), the nonparametric nature of Quantile Regression and the efficiency of Direct Multi-Horizon Forecasting. A new training scheme, *forking-sequences*, is designed for sequential nets to boost stability and performance. We show that the approach accommodates both temporal and static covariates, learning across multiple related series, shifting seasonality, future planned event spikes and cold-starts in real life large-scale forecasting. The performance of the framework is demonstrated in an application to predict the future demand of items sold on this http URL, and in a public probabilistic forecasting competition to predict electricity price and load.
翻译