张德祥
(2022-05-02 09:28):
#paper https://doi.org/10.48550/arXiv.2001.04385 Universal Differential Equations for Scientific Machine Learnin
我们提供一流的工具来求解微分方程
我们提供用于推导和拟合科学模型的工具
我们提供高级域特定建模工具,使科学建模更易于访问
我们提供科学机器学习中最新算法的高级实现
我们为所有常见科学编程语言的用户提供使用我们工具的能力
我们提供用于研究科学机器学习方法的工具
我们的目标是什么
我们构建的一切都与自动微分兼容
性能被视为优先事项,性能问题被视为错误
我们的软件包使用科学模拟和机器学习工具进行了常规和稳健的测试
我们紧跟计算硬件的进步,以确保与最新的高性能计算工具兼容。
https://mp.weixin.qq.com/s/jR_2A1IqqZ1J8idmXb9Tpg
arXiv,
2021.
DOI: 10.48550/arXiv.2001.04385
Universal Differential Equations for Scientific Machine Learning
翻译
Abstract:
In the context of science, the well-known adage "a picture is worth a thousand words" might well be "a model is worth a thousand datasets." In this manuscript we introduce the SciML software ecosystem as a tool for mixing the information of physical laws and scientific models with data-driven machine learning approaches. We describe a mathematical object, which we denote universal differential equations (UDEs), as the unifying framework connecting the ecosystem. We show how a wide variety of applications, from automatically discovering biological mechanisms to solving high-dimensional Hamilton-Jacobi-Bellman equations, can be phrased and efficiently handled through the UDE formalism and its tooling. We demonstrate the generality of the software tooling to handle stochasticity, delays, and implicit constraints. This funnels the wide variety of SciML applications into a core set of training mechanisms which are highly optimized, stabilized for stiff equations, and compatible with distributed parallelism and GPU accelerators.
翻译