林海onrush
(2025-10-31 23:18):
#paper, PALQO: Physics-informed Model for Accelerating Large-scale Quantum Optimization,DOI:10.48550/arXiv.2509.20733。这篇论文提出了 PALQO,一种基于物理约束神经网络(PINN)的新方法用于加速大规模变分量子算法(VQAs)的训练。作者将 VQA 的参数更新过程重新表述为非线性偏微分方程(PDE)问题,并利用 PINN 在经典计算机上学习优化动力学,仅需少量量子测量数据即可预测后续参数更新,从而显著减少量子设备调用。理论分析表明,PALQO 具有良好的泛化性能,其所需训练样本数量随参数规模多项式增长。
在横场 Ising 模型、Heisenberg 模型及分子体系(如 LiH、BeH₂)等任务上的实验显示,PALQO 能在保持能量精度(误差约 (10^{-3}))的同时,将量子测量开销降低约90%,实现最高30倍加速。该方法在多体系统和量子化学计算中表现出良好的可扩展性,为在受限量子资源条件下推进大规模量子优化提供了新的思路。
arXiv,
2025-09-25T04:26:02Z.
DOI: 10.48550/arXiv.2509.20733
PALQO: Physics-informed Model for Accelerating Large-scale Quantum Optimization
翻译
Abstract:
Variational quantum algorithms (VQAs) are leading strategies to reachpractical utilities of near-term quantum devices. However, the no-cloningtheorem in quantum mechanics precludes standard backpropagation, leading toprohibitive quantum resource costs when applying VQAs to large-scale tasks. Toaddress this challenge, we reformulate the training dynamics of VQAs as anonlinear partial differential equation and propose a novel protocol thatleverages physics-informed neural networks (PINNs) to model this dynamicalsystem efficiently. Given a small amount of training trajectory data collectedfrom quantum devices, our protocol predicts the parameter updates of VQAs overmultiple iterations on the classical side, dramatically reducing quantumresource costs. Through systematic numerical experiments, we demonstrate thatour method achieves up to a 30x speedup compared to conventional methods andreduces quantum resource costs by as much as 90\% for tasks involving up to 40qubits, including ground state preparation of different quantum systems, whilemaintaining competitive accuracy. Our approach complements existing techniquesaimed at improving the efficiency of VQAs and further strengthens theirpotential for practical applications.
翻译
Related Links: