颜林林 (2025-02-24 21:06):
#paper doi:10.1038/s41588-024-02050-9, Nature Genetics, 2025, Cell state-dependent allelic effects and contextual Mendelian randomization analysis for human brain phenotypes. 这篇是今年1月份新发表在Nature Genetics的文章,对391例人脑(208患者 vs. 183对照,死后的组织样本)进行snRNA-seq(单核测序)和SNP芯片检测,单核测序能够分析得到不同细胞类型的每个基因的表达量,于是可以鉴别出特定细胞的eQTL,即只在某个细胞类型中才会对基因表达量产生影响的那些突变。这个研究逻辑(鉴别特定细胞的eQTL),在此之前已经有不止一篇文章做过了。本文的重要创新点在于,构建了三个模型(M0、M1、M2),分别表示用临床信息协变量、协变量+基因型、协变量+基因型x疾病来预测表达量,接着,M1 对 M0,M2 对 M1 分别做似然比检验(likelihood ratio test),可以筛选出那些仅影响基因表达量但不直接影响疾病表型的突变,这正好用于后续的孟德尔随机化分析,从而在基因(表达量)与表型之间建立起因果关系(而不仅仅是相关关系)。之后文章还使用大规模的蛋白组数据,在蛋白水平进行了相应验证。
Cell state-dependent allelic effects and contextual Mendelian randomization analysis for human brain phenotypes
翻译
Abstract:
Abstract Gene expression quantitative trait loci are widely used to infer relationships between genes and central nervous system (CNS) phenotypes; however, the effect of brain disease on these inferences is unclear. Using 2,348,438 single-nuclei profiles from 391 disease-case and control brains, we report 13,939 genes whose expression correlated with genetic variation, of which 16.7–40.8% (depending on cell type) showed disease-dependent allelic effects. Across 501 colocalizations for 30 CNS traits, 23.6% had a disease dependency, even after adjusting for disease status. To estimate the unconfounded effect of genes on outcomes, we repeated the analysis using nondiseased brains (n = 183) and reported an additional 91 colocalizations not present in the larger mixed disease and control dataset, demonstrating enhanced interpretation of disease-associated variants. Principled implementation of single-cell Mendelian randomization in control-only brains identified 140 putatively causal gene–trait associations, of which 11 were replicated in the UK Biobank, prioritizing candidate peripheral biomarkers predictive of CNS outcomes.
翻译
回到顶部