林海onrush
(2025-01-01 00:27):
#paper, doi: https://doi.org/10.48550/arXiv.2305.19229 ,FedDisco: Federated Learning with Discrepancy-Aware Collaboration, AI顶会ICML上的一篇联邦学习文章,这篇论文提出了一种新的联邦学习(Federated Learning, FL)方法,称为 FedDisco,用于解决数据异质性问题,特别是类别分布的差异性。传统联邦学习通常根据客户端数据集的大小分配模型聚合权重,但这种方法无法充分反映客户端数据的类别分布差异,导致全局模型优化性能不足。FedDisco 引入了一种“差异感知”的聚合权重计算方式,将客户端的数据集大小和本地与全局类别分布的差异程度结合起来,通过调整聚合权重优化全局模型。这一方法在保持隐私保护的前提下,提高了通信和计算效率,并通过理论分析证明了其能有效收紧优化误差上界,从而改善全局模型性能。
实验表明,FedDisco 在多种异质性场景和数据集上显著优于现有的联邦学习方法,且其模块化设计可以轻松整合到现有方法中以进一步提升性能。此外,该方法在仅部分客户端参与的场景和文本分类任务中也表现出良好的适用性。FedDisco 的关键优势在于其创新的聚合权重分配策略,能够在低计算和通信开销下,提升联邦学习算法的鲁棒性和泛化能力。
arXiv,
2023-05-30T17:20:51Z.
DOI: 10.48550/arXiv.2305.19229
FedDisco: Federated Learning with Discrepancy-Aware Collaboration
翻译
Abstract:
This work considers the category distribution heterogeneity in federatedlearning. This issue is due to biased labeling preferences at multiple clientsand is a typical setting of data heterogeneity. To alleviate this issue, mostprevious works consider either regularizing local models or fine-tuning theglobal model, while they ignore the adjustment of aggregation weights andsimply assign weights based on the dataset size. However, based on ourempirical observations and theoretical analysis, we find that the dataset sizeis not optimal and the discrepancy between local and global categorydistributions could be a beneficial and complementary indicator for determiningaggregation weights. We thus propose a novel aggregation method, FederatedLearning with Discrepancy-aware Collaboration (FedDisco), whose aggregationweights not only involve both the dataset size and the discrepancy value, butalso contribute to a tighter theoretical upper bound of the optimization error.FedDisco also promotes privacy-preservation, communication and computationefficiency, as well as modularity. Extensive experiments show that our FedDiscooutperforms several state-of-the-art methods and can be easily incorporatedwith many existing methods to further enhance the performance. Our code will beavailable at https://github.com/MediaBrain-SJTU/FedDisco.
翻译
Related Links: