前进
(2024-06-30 22:29):
#paper Liu R , Li Z , Fan X ,et al.Learning Deformable Image Registration from Optimization: Perspective, Modules, Bilevel Training and Beyond[J]. 2020.DOI:10.48550/arXiv.2004.14557.
论文提出了一个新的基于深度学习的框架,旨在通过多尺度传播优化微分同胚模型来整合传统变形配准方法和基于深度学习的方法的优势,并避免它们的局限性。具体来说,作者提出了一个通用的优化模型来解决微分同胚配准问题,并开发了一系列可学习的架构,以从粗到细的学习图像特征完成配准。此外,论文还提出了一种新颖的双层自调整训练策略,允许高效地搜索任务特定的超参数,这增加了对各种类型数据的灵活性,同时减少了计算和人力负担。
作者多种数据集上进行了配准实验,包括大脑MRI数据的图像到图谱配准和肝脏CT数据的图像到图像配准。实验结果表明,所提出的方法在保持微分同胚的同时,达到了最先进的性能。此外,作者还将其框架应用于多模态图像配准,并研究了其配准如何支持医学图像分析的下游任务,包括多模态融合和图像分割。
arXiv,
2020.
DOI: 10.48550/arXiv.2004.14557
Learning Deformable Image Registration from Optimization: Perspective, Modules, Bilevel Training and Beyond
翻译
Abstract:
Conventional deformable registration methods aim at solving an optimizationmodel carefully designed on image pairs and their computational costs areexceptionally high. In contrast, recent deep learning based approaches canprovide fast deformation estimation. These heuristic network architectures arefully data-driven and thus lack explicit geometric constraints, e.g.,topology-preserving, which are indispensable to generate plausibledeformations. We design a new deep learning based framework to optimize adiffeomorphic model via multi-scale propagation in order to integrateadvantages and avoid limitations of these two categories of approaches.Specifically, we introduce a generic optimization model to formulatediffeomorphic registration and develop a series of learnable architectures toobtain propagative updating in the coarse-to-fine feature space. Moreover, wepropose a novel bilevel self-tuned training strategy, allowing efficient searchof task-specific hyper-parameters. This training strategy increases theflexibility to various types of data while reduces computational and humanburdens. We conduct two groups of image registration experiments on 3D volumedatasets including image-to-atlas registration on brain MRI data andimage-to-image registration on liver CT data. Extensive results demonstrate thestate-of-the-art performance of the proposed method with diffeomorphicguarantee and extreme efficiency. We also apply our framework to challengingmulti-modal image registration, and investigate how our registration to supportthe down-streaming tasks for medical image analysis including multi-modalfusion and image segmentation.
翻译
Related Links: