盼盼
(2024-04-30 22:50):
#paper doi:https://doi.org/10.1038/s41587-021-00830-w Robust decomposition of cell type mixtures in spatial transcriptomics
空间转录组学技术的局限在于,每个spot的测序数值可能来自于不同细胞的贡献,这样不利于细胞特异性和空间表达模式特异性的挖掘。本篇文章的作者开发了一个稳定性比较高的软件:RCTD,它利用从单细胞数据中细胞特异性谱图的表达水平,预测每个spot中细胞类型,并计算出每种细胞的权重。RCTD计算了小鼠Slide-seq跟visium数据集中准确的再现了已知的细胞类型和亚型细胞定位模式。不过这个方法结果的可靠程度依赖于注释好的单细胞数据集的质量,因此选择质量好的单细胞数据集,或者细胞注释准确度高的与空间数据匹配好的单细胞数据集是非常重要的。选择RCTD对空间数据spot的细胞类型的空间成分,揭示生物组织中细胞组织的新原理。
Robust decomposition of cell type mixtures in spatial transcriptomics
翻译
Abstract:
A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD's recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD .
翻译