响马读paper

一个要求成员每月至少读一篇文献并打卡的学术交流社群

2024, bioRxiv. DOI: 10.1101/2024.03.18.585576
Single-cell genomics and regulatory networks for 388 human brains
Prashant S. Emani, Jason J. Liu, Declan Clarke, Matthew Jensen, Jonathan Warrell, Chirag Gupta, Ran Meng, Che Yu Lee, Siwei Xu, Cagatay Dursun, Shaoke Lou, Yuhang Chen, Zhiyuan Chu, Timur Galeev, Ahyeon Hwang, Yunyang Li, Pengyu Ni, Xiao Zhou, Trygve E. Bakken, Jaroslav Bendl, Lucy Bicks, Tanima Chatterjee, Lijun Cheng, Yuyan Cheng, Yi Dai, Ziheng Duan, Mary Flaherty, John F. Fullard, Michael Gancz, Diego Garrido-Martín, Sophia Gaynor-Gillett, Jennifer Grundman, Natalie Hawken, Ella Henry, Gabriel E. Hoffman, Ao Huang, Yunzhe Jiang, Ting Jin, Nikolas L. Jorstad, Riki Kawaguchi, Saniya Khullar, Jianyin Liu, Junhao Liu, Shuang Liu, Shaojie Ma, Michael Margolis, Samantha Mazariegos, Jill Moore, Jennifer R. Moran, Eric Nguyen, Nishigandha Phalke, Milos Pjanic, Henry Pratt, Diana Quintero, Ananya S. Rajagopalan, Tiernon R. Riesenmy, Nicole Shedd, Manman Shi, Megan Spector, Rosemarie Terwilliger, Kyle J. Travaglini, Brie Wamsley, Gaoyuan Wang, Yan Xia, Shaohua Xiao, Andrew C. Yang, Suchen Zheng, Michael J. Gandal, Donghoon Lee, Ed S. Lein, Panos Roussos, Nenad Sestan, Zhiping Weng, Kevin P. White, Hyejung Won, Matthew J. Girgenti, Jing Zhang, Daifeng Wang, Daniel Geschwind, Mark Gerstein,
Abstract:
AbstractSingle-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ∼250 disease-risk genes and drug targets with associated cell types.Summary Figure
2024-04-30 22:44:00
#paper doi:10.1101/2024.03.18.585576,bioRxiv,2024-03-19。Single-cell genomics and regulatory networks for 388 human brains。这个研究首次在人群规模对人脑前额叶区域进行了单细胞核转录组、染色质可及性测序,然后在细胞类型的精度对基因调控网络、细胞通讯网络等方面进行了生理和病理条件下的探究。研究结果可以在项目(brainSCOPE)的官网获取。官网:http://brainscope.psychencode.org。该研究用了388个人的脑。其中333个是该研究产生的,55个是外来的;健康个体有182个,其余有精神分裂症、双相障碍(抑郁狂躁型忧郁症)、自闭症或老年痴呆。388个个体有snRNA-seq数据。59个个体有snATAC-seq数据,其中40个的是snMultiome(对同一个细胞既测转录组又测ATAC)。质控后共280万个细胞核(注释到了28种细胞)。【研究角度及部分主要发现】1,对每种细胞找cis-eQTL和cis调控元件。2,构建细胞类型特异性的基因调控网络和细胞间通信网络,并展示这些网络在衰老和神经精神疾病中的变异。3,探究每种细胞的占比、基因表达、表观遗传和年龄、老年痴呆的关联。用基因表达量构建预测年龄的摸型。发现有6种细胞的转录组有很强的预测能力。4,在每种细胞里构建摸型,用遗传变异预测对细胞、组织的基因表达的影响。模拟基因序列的干绕对基因表达、表型(包括疾病倾向)等下游的影响。【研究的不足或未来研究方向】 1,RNA表达量不能代替蛋白表达量。这在某些脑区尤其突出。2,人去世后的脑组织和活人的脑组织有区别。3,研究更多脑区,以及发育、衰老中的脑区或者类器官。4,整合更多类型的数据,比如成像数据,用于提升预测表型的能力。【应用前景】1,为理解神经精神疾病的分子机制提供了新的视角,有助于发现新的治疗方法。2,通过整合模型(LNCTP),可以从基因型数据中预测个体的细胞类型特异性功能基因表达,为精准医疗提供工具。3,研究结果可用于优先考虑潜在的药物靶点,并模拟特定基因的表达变化,以预测其对疾病表型的潜在影响。4,该研究创建的brainSCOPE资源库可供其他研究者使用,以进一步探索大脑的分子结构和功能。总体而言,这项研究通过大规模的单细胞分析,为理解人类大脑的复杂性、疾病机制和潜在的治疗干预提供了宝贵的资源和新的洞见。
TOP