响马读paper

一个要求成员每月至少读一篇文献并打卡的学术交流社群

2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/CVPR42600.2020.00470
Fast Symmetric Diffeomorphic Image Registration with Convolutional Neural Networks
Tony C.W. Mok , Albert C.S. Chung
Abstract:
Diffeomorphic deformable image registration is crucial in many medical image studies, as it offers unique, special features including topology preservation and invertibility of the transformation. Recent deep learning-based deformable image registration methods achieve fast image registration by leveraging a convolutional neural network (CNN) to learn the spatial transformation from the synthetic ground truth or the similarity metric. However, these approaches often ignore the topology preservation of the transformation and the smoothness of the transformation which is enforced by a global smoothing energy function alone. Moreover, deep learning-based approaches often estimate the displacement field directly, which cannot guarantee the existence of the inverse transformation. In this paper, we present a novel, efficient unsupervised symmetric image registration method which maximizes the similarity between images within the space of diffeomorphic maps and estimates both forward and inverse transformations simultaneously. We evaluate our method on 3D image registration with a large scale brain image dataset. Our method achieves state-of-the-art registration accuracy and running time while maintaining desirable diffeomorphic properties.
2022-06-30 17:14:00
#paper doi:10.1109/CVPR42600.2020.00470 CVPR 2020 Fast Symmetric Diffeomorphic Image Registration with Convolutional Neural Networks 这篇图像配准论文的思路新颖,不同于以往浮动图像朝着固定图像配准的思路,本文将浮动图像和固定图像同时朝着中间图像进行配准。在图像配准过程中,需要保证变形场的微分同胚性,即需要保留图像的拓扑结构,保证变形场是可逆的(不发生折叠)。以往的基于学习的方法通常通过给变形场施加一个全局的正则化来实现这一要求。但是这种做法引入了超参数,要么容易导致变形场过度平坦使得配准精度下降,要么变形场变形过大无法保证变形场不发生折叠。受到传统的对称图像归一化方法的启发,本文提出了一种新的、有效的无监督对称图像配准方法,该方法使微分纯映射空间内图像之间的相似性最大化,并同时估计正变换和逆变换,使得输入的图像从两个方向朝中间对齐,能够同时保证配准精度和变形场的微分同胚性。
TOP