响马读paper

一个要求成员每月至少读一篇文献并打卡的学术交流社群

2022, IEEE Transactions on Medical Imaging. DOI: 10.1109/TMI.2022.3174827
PTNet3D: A 3D High-Resolution Longitudinal Infant Brain MRI Synthesizer Based on Transformers
Xuzhe Zhang, Xinzi He, Jia Guo, Nabil Ettehadi, Natalie Aw, David Semanek, Jonathan Posner, Andrew Laine, Yun Wang
Abstract:
No abstract available.
2023-11-30 23:19:00
#paper 10.1109/TMI.2022.3174827 PTNet3D: A 3D High-Resolution Longitudinal Infant Brain MRI Synthesizer Based on Transformers 最近看了一些基于GAN的医学图像生成的文章(当然现在的热点都转向diffusion model了),感觉都很没有创意,有点无聊,并且都存在一些共性问题。第一,纵向婴幼儿图像生成算法仅仅是通过在每个年龄段训练模型来构建,完全可以把年龄作为条件直接生成;第二,为了缓解数据维度高且数据量小的问题,大多数这类生成算法都基于slice或者patch的生成方式,不可避免的会导致生成图像的不连续性,而且基本上所有文章都没解决这个问题。在我的新工作(不是单纯的图像生成任务)里,这些问题都得到了重视并予以解决,估计年后会release预印本出来,敬请期待。
TOP